Arches Cluster

Arches Cluster

Arches Cluster of young, massive stars. This image was obtained with NACO adaptive optics system on ESO’s Very Large Telescope.
Observation data (J2000 epoch)
Constellation Sagittarius
Right ascension 17h 45m 50.5s
Declination 28° 49 28
Distance 25 kly (8.5 kpc)
Physical characteristics
Notable features Optically obscured
Arches Cluster NASA/ESA Hubble Space Telescope 5/29/2015 Infrared image

The Arches Cluster is the densest known star cluster in the Milky Way located about 100 light years from its center, in the constellation Sagittarius (The Archer), 25,000 light-years from Earth. The discovery of this cluster was reported by Nagata et al. in 1995,[1] and independently by Cotera et al. in 1996.[2] Due to extremely heavy optical extinction by dust in this region, the Arches Cluster is obscured in the visual bands, and is observed in the X-ray, infrared, and radio bands. It contains approximately 135 young, very hot stars that are many times larger and more massive than the Sun, plus many thousands of less massive stars.[3]

This star cluster is estimated to be around two and a half million years old.[3] Although larger and denser than the nearby Quintuplet Cluster, it appears to be slightly younger. The most evolved stars are barely edging away from the main sequence while the Quintuplet Cluster includes a number of hot supergiants as well as a red supergiant and three Luminous Blue Variables.

Work by Donald Figer, an astronomer at the Rochester Institute of Technology suggests that 150 solar masses (M) is the upper limit of stellar mass in the current era of the universe. He used the Hubble Space Telescope to observe about a thousand stars in the Arches cluster and found no stars over that limit despite a statistical expectation that there should be several.[4] However, later research demonstrated a very high sensitivity of the calculated star masses upon the extinction laws used for mass derivation, which can affect the upper mass limit by about 30% using different extinction laws[5] (possibly from 150 M to about 100 M).

Prominent stars
B=Blum[6] F=Figer[7] WR#[8] Spectral type[9] Magnitude[9] (bolometric) Temperature[9] (effective, K) Mass[10] (M) Radius[9] (R)
B1 102bc WN8-9h 10.1 31,700 50 - 60 32
F1 102ad WN8-9h 11.0 33,200 101 - 119 43
F2 102aa WN8-9h 10.2 33,500 42 - 49 30
F3 102bb WN8-9h 10.5 29,600 52 - 63 43
F4 102al WN7-8h 11.0 36,800 66 - 76 35
F5 102ai WN8-9h 10.1 32,100 31 - 36 31
F6 102ah WN8-9h 11.1 33,900 101 - 119 44
F7 102aj WN8-9h 11.0 32,900 86 - 102 44
F8 102ag WN8-9h 10.5 32,900 43 - 51 35
F9 102ae WN8-9h 11.1 36,600 111 - 131 38
F10 102ab O4-6If+ 10.1 32,200 55 - 69 24
F12 102af WN7-8h 10.8 36,900 70 - 82 31
F14 102ba WN8-9h 10.2 34,500 54 - 65 28
F15 O4-6If+ 10.6 35,600 80 - 97 32
F16 102ak WN8-9h 10.0 32,200 46 - 56 29
F17 102ac WN7[6]
F18 O4-6I 10.4 36,900 67 - 82 26
F20 O4-6I 10.0 38,200 47 - 57 21
F21 O4-6I 10.1 35,500 56 - 70 25
F28 O4-6I 10.1 39,600 57 - 72 23

References

  1. Nagata, T.; Woodward, C.; Shure, M.; Kobayashi, N. (April 1995). "Object 17: Another cluster of emission-line stars near the Galactic center". Astronomical Journal. 109 (4): 1676. Bibcode:1995AJ....109.1676N. doi:10.1086/117395.
  2. Cotera, A.; Erickson, E.; Colgan, S.; Simpson, J.; Allen, D.; Burton, M. (April 1996). "The discovery of hot stars near the Galactic center thermal radio filaments". Astrophysical Journal. 461 (750): 750. Bibcode:1996ApJ...461..750C. doi:10.1086/177099.
  3. 1 2 Espinoza, P.; Selman, F. J.; Melnick, J. (July 2009). "The massive star initial mass function of the Arches cluster". Astronomy and Astrophysics. 504 (2): 563–583. arXiv:0903.2222Freely accessible. Bibcode:2009A&A...501..563E. doi:10.1051/0004-6361/20078597.
  4. Figer, Donald F. (2005). "An upper limit to the masses of stars". Nature. 434 (7030): 192–194. arXiv:astro-ph/0503193Freely accessible. Bibcode:2005Natur.434..192F. doi:10.1038/nature03293. ISSN 0028-0836. PMID 15758993.
  5. Habibi, M.; Stolte, A.; Brandner, W.; Hußmann, B.; Motohara, K. (August 2013). "The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function". Astronomy and Astrophysics. 556 (A26): A26. arXiv:1212.3355Freely accessible. Bibcode:2013A&A...556A..26H. doi:10.1051/0004-6361/201220556.
  6. 1 2 Blum, R. D.; Schaerer, D.; Pasquali, A.; Heydari-Malayeri, M.; Conti, P. S.; Schmutz, W. (2001). "2 Micron Narrowband Adaptive Optics Imaging in the Arches Cluster". The Astronomical Journal. 122 (4): 1875. arXiv:astro-ph/0106496Freely accessible. Bibcode:2001AJ....122.1875B. doi:10.1086/323096.
  7. Figer, D. F.; Najarro, F.; Gilmore, D.; Morris, M.; Kim, S. S.; Serabyn, E.; McLean, I. S.; Gilbert, A. M.; Graham, J. R.; Larkin, J. E.; Levenson, N. A.; Teplitz, H. I. (2002). "Massive Stars in the Arches Cluster". The Astrophysical Journal. 581: 258. arXiv:astro-ph/0208145Freely accessible. Bibcode:2002ApJ...581..258F. doi:10.1086/344154.
  8. Van Der Hucht, K. A. (2006). "New Galactic Wolf-Rayet stars, and candidates. An annex to the VIIth Catalogue of Galactic Wolf-Rayet Stars". Astronomy and Astrophysics. 458 (2): 453. Bibcode:2006A&A...458..453V. doi:10.1051/0004-6361:20065819.
  9. 1 2 3 4 Martins, F.; Hillier, D. J.; Paumard, T.; Eisenhauer, F.; Ott, T.; Genzel, R. (2008). "The most massive stars in the Arches cluster". Astronomy and Astrophysics. 478: 219. arXiv:0711.0657Freely accessible. Bibcode:2008A&A...478..219M. doi:10.1051/0004-6361:20078469.
  10. Gräfener, G.; Vink, J. S.; de Koter, A.; Langer, N. (2011). "The Eddington factor as the key to understand the winds of the most massive stars". Astronomy & Astrophysics. 535: A56. arXiv:1106.5361Freely accessible. Bibcode:2011A&A...535A..56G. doi:10.1051/0004-6361/201116701. ISSN 0004-6361.

External links

This article is issued from Wikipedia - version of the 10/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.