Burnside category

In category theory and homotopy theory the Burnside category of a finite group G is a category whose objects are finite G-sets and whose morphisms are (equivalence classes of) spans of G-equivariant maps. It is a categorification of the Burnside ring of G.

Definitions

Let G be a finite group (in fact everything will work verbatim for a profinite group). Then for any two finite G-sets X and Y we can define an equivalence relation among spans of G-sets of the form where two spans and are equivalent if and only if there is a G-equivariant bijection of U and W commuting with the projection maps to X and Y. This set of equivalence classes form naturally a monoid under disjoint union; we indicate with the group completion of that monoid. Taking pullbacks induces natural maps .

Finally we can define the Burnside category A(G) of G as the category whose objects are finite G-sets and the morphisms spaces are the groups .

Properties

Mackey functors

If C is an additive category, then a C-valued Mackey functor is an additive functor from A(G) to C. Mackey functors are important in representation theory and stable equivariant homotopy theory.

References


This article is issued from Wikipedia - version of the 6/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.