Chloro(dimethyl sulfide)gold(I)

Chloro(dimethyl sulfide)gold(I)
structural formula of the title molecule
ball-and-stick model of the molecule derived from the crystal structure
Identifiers
29892-37-3 YesY
3D model (Jmol) Interactive image
ChemSpider 4809153
ECHA InfoCard 100.156.209
PubChem 6100873
Properties
C2H6AuClS
Molar mass 294.55 g·mol−1
Hazards
Xi
R-phrases R36/37/38
S-phrases S26-S36
Related compounds
Related compounds
chloro(tetrahydrothiophene)gold(I)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Chloro(dimethyl sulfide)gold(I) is a coordination complex of gold. It is a white solid. This compound is a common entry point into gold chemistry.

Structure

As for many other gold(I) complexes, the compound adopts a nearly linear (176.9°) geometry about the central gold centre. The Au-S bond distance is 2.271(2) Å, which is similar to other gold(I)-sulfur bonds.[1]

Preparation

Chloro(dimethyl sulfide)gold(I) is commercially available. It may be prepared by dissolving gold in aqua regia (to give chloroauric acid), followed by addition of dimethyl sulfide.[2] Alternatively, sodium tetrachloroaurate may be used as the source of gold(III).[3] The bromo analog, Me2SAuBr, has also been synthesized by a similar route.[4] An approximate equation is:

HAuCl4 + 2 SMe2 + H2O Me2SAuCl + 3 HCl + OSMe2

Reactions

In chloro(dimethyl sulfide)gold(I), the dimethyl sulfide ligand is easily displaced by other ligands:

Me2SAuCl + L LAuCl + Me2S (L = ligand)

Since Me2S is volatile, the new complex LAuCl is often easily purified.

When exposed to light and air, the compound decomposes to elemental gold.

References

  1. P. G. Jones and J. Lautner (1988). "Chloro(dimethyl sulfide)gold(I)". Acta Crystallogr. C. 44 (12): 2089–2091. doi:10.1107/S0108270188009151.
  2. Marie-Claude Brandys , Michael C. Jennings and Richard J. Puddephatt (2000). "Luminescent gold(I) macrocycles with diphosphine and 4,4-bipyridyl ligands". J. Chem. Soc., Dalton Trans. (24): 4601–4606. doi:10.1039/b005251p.
  3. Nishina, Naoko; Yamamoto, Yoshinori (2007). "Gold-Catalyzed Intermolecular Hydroamination of Allenes: First Example of the Use of an Aliphatic Amine in Hydroamination". Synlett. 2007 (11): 1767. doi:10.1055/s-2007-984501.
  4. Hickey, James L.; Ruhayel, Rasha A.; Barnard, Peter J.; Baker, Murray V.; Berners-Price, Susan J.; Filipovska, Aleksandra (2008). "Mitochondria-Targeted Chemotherapeutics: The Rational Design of Gold(I)N-Heterocyclic Carbene Complexes That Are Selectively Toxic to Cancer Cells and Target Protein Selenols in Preference to Thiols". J. Am. Chem. Soc. 130 (38): 12570–1. doi:10.1021/ja804027j. PMID 18729360.
This article is issued from Wikipedia - version of the 2/16/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.