Electron affinity (data page)
This page deals with the electron affinity as a property of isolated atoms or molecules (i.e. in the gas phase). Solid state electron affinities are not listed here.
Elements
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated atom (gas phase). (The energy -or electron affinity- is a scalar quantity and the direction of that energy -released- defines a reaction for which the change in energy ΔE is a negative quantity). The electron affinity is also defined in the case of electron capture as E(initial) – E(final) in order to maintain the positive value.[1] The reverse definition is that the electron affinity is the energy required to remove an electron from a gaseous anion (still a positive quantity, but in which the change in energy ΔE is also a positive quantity). Either convention can be used in practice, but must be consistent in according a scalar, i.e. positive number to the electron affinity.
Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out by the freed electron as kinetic energy. Negative ions formed in these cases are always unstable. They may have lifetimes of the order of microseconds to milliseconds, but they invariably autodetach after some time. The listed value in the table corresponds to a selected low-lying metastable state, which may or may not be the lowest energy resonance. For example, in He− there is a metastable state with 0.359 ms lifetime at 19.7 eV above the ground state of He, however there is also a lower energy resonance at 19.4 eV that only has a 10−13 s lifetime.[2]
Z | Element | Name | Electron affinity (eV) | Electron affinity (kJ/mol) | References |
---|---|---|---|---|---|
1 | 1H | Hydrogen | 0.754 195(19) | 72.769(2) | [3] |
2D | Deuterium | 0.754 59(8) | 72.807(8) | ||
2 | He | Helium | -19.7 | 1s2s2p 4P5/2, 350 μs lifetime.[2] | |
3 | Li | Lithium | 0.618 049(22) | 59.6326(21) | [4] |
4 | Be | Beryllium | -2.4 | 1s2s2p2 4P3/2, 43 μs lifetime.[2] | |
5 | B | Boron | 0.279 723(25) | 26.989(3) | [5] |
6 | 12C | Carbon | 1.262 122 6(11) | 121.776 3(1) | [6] |
13C | 1.262 113 6(12) | 121.775 5(2) | |||
7 | N | Nitrogen | -1.4 | 2p4 1D, <1 μs lifetime.[2] | |
8 | 16O | Oxygen | 1.461 1136(9) | 140.9760(2) | [7] |
17O | 1.461 108(4) | 140.9755(4) | [8] | ||
18O | 1.461 105(3) | 140.9752(3) | |||
9 | F | Fluorine | 3.401 1898(25) | 328.1649(3) | [9][10] |
10 | Ne | Neon | - | no metastable states[2] | |
11 | Na | Sodium | 0.547 926(25) | 52.867(3) | [11] |
12 | Mg | Magnesium | - | no metastable states[2] | |
13 | Al | Aluminium | 0.432 83(5) | 41.762(5) | [12] |
14 | Si | Silicon | 1.389 5212(8) | 134.0684(1) | [7] |
15 | P | Phosphorus | 0.746 607(10) | 72.037(1) | [13] |
16 | 32S | Sulfur | 2.077 1042(6) | 200.4101(1) | [7] |
34S | 2.077 1045(12) | 200.4101(2) | [14] | ||
17 | Cl | Chlorine | 3.612 724(27) | 348.575(3) | [15] |
18 | Ar | Argon | -11.5 | 3p54s4p 4S3/2, 260 ns lifetime[2] | |
19 | K | Potassium | 0.501 459(13) | 48.383(2) | [16] |
20 | Ca | Calcium | 0.024 55(10) | 2.37(1) | [17] |
21 | Sc | Scandium | 0.188(20) | 18(2) | [18] |
22 | Ti | Titanium | 0.084(9) | 8(1) | [19] |
23 | V | Vanadium | 0.527 66(20) | 50.911(20) | [20] |
24 | Cr | Chromium | 0.675 84(12) | 65.21(2) | [21] |
25 | Mn | Manganese | -1 (theoretical) | [2] | |
26 | Fe | Iron | 0.153 236(34) | 14.785(4) | [22] |
27 | Co | Cobalt | 0.662 26(5) | 63.898(5) | [23] |
28 | Ni | Nickel | 1.157 16(12) | 111.65(2) | [24] |
29 | Cu | Copper | 1.235 78(4) | 119.235(4) | [21] |
30 | Zn | Zinc | - | No stable negative ion.[2] | |
31 | Ga | Gallium | 0.43(3) | 41(3) | [25] |
32 | Ge | Germanium | 1.232 6764(13) | 118.9352(2) | [26] |
33 | As | Arsenic | 0.8048(2) | 77.65(2) | [27] |
34 | Se | Selenium | 2.020 6047(12) | 194.9587(2) | [28] |
35 | Br | Bromine | 3.363 588(3) | 324.5370(3) | [9] |
36 | Kr | Krypton | - | no metastable states[2] | |
37 | Rb | Rubidium | 0.485 916(21) | 46.884(3) | [29] |
38 | Sr | Strontium | 0.052 06(6) | 5.023(6) | [30] |
39 | Y | Yttrium | 0.307(12) | 29.6(12) | [18] |
40 | Zr | Zirconium | 0.427(14) | 41.2(14) | [31] |
41 | Nb | Niobium | 0.91740(6) | 88.516(7) | [32] |
42 | Mo | Molybdenum | 0.7473(3) | 72.10(3) | [21] |
43 | Tc | Technetium | ? | May be unstable like Mn.[2] | |
44 | Ru | Ruthenium | 1.046 38(25) | 100.96(3) | [33] |
45 | Rh | Rhodium | 1.142 89(20) | 110.27(2) | [24] |
46 | Pd | Palladium | 0.562 14(12) | 54.24(2) | |
47 | Ag | Silver | 1.304 47(3) | 125.862(3) | [21] |
48 | Cd | Cadmium | - | No stable negative ion.[2] | |
49 | In | Indium | 0.383 92(6) | 37.043(6) | [34] |
50 | Sn | Tin | 1.112 070(2) | 107.2984(3) | [35] |
51 | Sb | Antimony | 1.047 401(19) | 101.059(2) | [36] |
52 | Te | Tellurium | 1.970 875(7) | 190.161(1) | [37] |
53 | I | Iodine | 3.059 0465(38) | 295.1531(4) | [38] |
54 | Xe | Xenon | -0.056(10) (theoretical) | [2] | |
55 | Cs | Caesium | 0.471 630(25) | 45.505(3) | [11][39] |
56 | Ba | Barium | 0.144 62(6) | 13.954(6) | [40] |
57 | La | Lanthanum | 0.55(2) | 53(2) | [41] |
58 | Ce | Cerium | 0.57(2) | 55(2) | [42] |
59 | Pr | Praseodymium | 0.962(24) | 93(3) | [2] |
60 | Nd | Neodymium | 0.162 (theoretical) | [43] | |
61 | Pm | Promethium | 0.129 (theoretical) | ||
62 | Sm | Samarium | 0.162 (theoretical) | ||
63 | Eu | Europium | 0.116(13) | 11(1) | [44] |
64 | Gd | Gadolinium | 0.137 (theoretical) | [43] | |
65 | Tb | Terbium | 0.436 (theoretical) | ||
66 | Dy | Dysprosium | 0.352 (theoretical) | ||
67 | Ho | Holmium | 0.338 (theoretical) | ||
68 | Er | Erbium | 0.312 (theoretical) | ||
69 | Tm | Thulium | 1.029(22) | 99(3) | [45] |
70 | Yb | Ytterbium | 0.00(3) | [2] | |
71 | Lu | Lutetium | 0.346(14) | 33.4(15) | [46][47] |
72 | Hf | Hafnium | 0.114 (theoretical) | [2][48] | |
73 | Ta | Tantalum | 0.323(12) | 31(2) | [31] |
74 | W | Tungsten | 0.816 26(8) | 78.76(1) | [49] |
75 | Re | Rhenium | 0.15(10) | 14(10) | [50] May be unstable like Mn.[2] |
76 | Os | Osmium | 1.077 80(12) | 103.99(2) | [51] |
77 | Ir | Iridium | 1.564 36(15) | 150.94(2) | [52] |
78 | Pt | Platinum | 2.125 10(5) | 205.041(5) | |
79 | Au | Gold | 2.308 610(25) | 222.747(3) | [53] |
80 | Hg | Mercury | - | No stable negative ion.[2] | |
81 | Tl | Thallium | 0.377(13) | 36.4(14) | [54] |
82 | Pb | Lead | 0.364(8) | 35(1) | [55] |
83 | Bi | Bismuth | 0.942 362(13) | 90.924(2) | [56] |
84 | Po | Polonium | 1.405(62) (theoretical) | 135.5(60) (theoretical) | [57] |
85 | At | Astatine | 2.42(12) (theoretical) | 233.1(11) (theoretical) | |
86 | Rn | Radon | |||
87 | Fr | Francium | 0.491(5) (theoretical) | [58] | |
88 | Ra | Radium | |||
89 | Ac | Actinium | |||
90 | Th | Thorium | |||
91 | Pa | Protactinium | |||
92 | U | Uranium | |||
93 | Np | Neptunium | |||
94 | Pu | Plutonium | |||
95 | Am | Americium | |||
96 | Cm | Curium | |||
97 | Bk | Berkelium | |||
98 | Cf | Californium | |||
99 | Es | Einsteinium | |||
100 | Fm | Fermium | |||
101 | Md | Mendelevium | |||
102 | No | Nobelium | |||
103 | Lr | Lawrencium | |||
104 | Rf | Rutherfordium | |||
105 | Db | Dubnium | |||
106 | Sg | Seaborgium | |||
107 | Bh | Bohrium | |||
108 | Hs | Hassium | |||
109 | Mt | Meitnerium | |||
110 | Ds | Darmstadtium | |||
111 | Rg | Roentgenium | |||
112 | Cn | Copernicium | |||
113 | Nh | Nihonium | |||
114 | Fl | Flerovium | |||
115 | Mc | Moscovium | |||
116 | Lv | Livermorium | |||
117 | Ts | Tennessine | 2.6 or 1.8 (theoretical) | [59] | |
118 | Og | Oganesson | 0.056(10) (theoretical) | [60] | |
119 | Uue | Ununennium | 0.662 (theoretical) | [58] | |
120 | Ubn | Unbinilium |
Molecules
The electron affinities Eea of some molecules are given in the table below, from the lightest to the heaviest. Many more have been listed by Rienstra-Kiracofe et al. (2002). The electron affinities of the radicals OH and SH are the most precisely known of all molecular electron affinities.
Bibliography
- Janousek, Bruce K.; Brauman, John I. (1979), "Electron affinities", in Bowers, M. T., Gas Phase Ion Chemistry, 2, New York: Academic Press, p. 53.
- Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002), "Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations", Chem. Rev., 102, pp. 231–282, doi:10.1021/cr990044u.
- Updated values can be found in the NIST chemistry webbook. These values must be taken with caution, however, for the Electron affinity determinations tables of this webbook show unexplained differences with respect to the original measurements. For instance the electron affinity of the iodine atom is told to be 3.05900(10) eV according to the most precise measurement, despite the fact the original publication[38] gives 3.0590463(38) eV.
Specific molecules
- Adams, C.L.; Schneider, H.; Ervin, K.M.; Weber, J.M. (2009), "Low-energy photoelectron imaging spectroscopy of nitromethane anions: Electron affinity, vibrational features, anisotropies, and the dipole-bound state", J. Chem. Phys., 130: 074307, doi:10.1063/1.3076892
- Borshchevskii, A.Ya.; Boltalina, O.V.; Sorokin, I.D.; Sidorov, L.N. (1988), "Thermochemical quantities for gas-phase iron, uranium, and molybdenum fluorides, and their negative ions", J. Chem. Thermodyn., 20 (5): 523, doi:10.1016/0021-9614(88)90080-8
- Chaibi, W.; Delsart, C.; Drag, C.; Blondel, C. (2006), "High precision measurement of the 32SH electron affinity by laser detachment microscopy", J. Mol. Spectrosc., 239: 11, doi:10.1016/j.jms.2006.05.012
- Chowdhury, S.; Kebarle, P. (1986), "Electron affinities of di- and tetracyanoethylene and cyanobenzenes based on measurements of gas-phase electron-transfer equilibria", J. Am. Chem. Soc., 108: 5453, doi:10.1021/ja00278a014
- Ervin, K.M.; Ho, J.; Lineberger, W.C. (1988), "Ultraviolet photoelectron spectrum of nitrite anion", J. Phys. Chem., 92: 5405, doi:10.1021/j100330a017
- Ervin, K.M.; Lineberger, W.C. (1991), "Photoelectron spectra of C−
2 and C2H−", J. Phys. Chem., 95: 1167, doi:10.1021/j100156a026 - George, P.M.; Beauchamp, J.L. (1979), "The electron and fluoride affinities of tungsten hexafluoride by ion cyclotron resonance spectroscopy", Chem. Phys., 36: 345, doi:10.1016/0301-0104(79)85018-1
- Goldfarb, F.; Drag, C.; Chaibi, W.; Kröger, S.; Blondel, C.; Delsart, C. (2005), "Photodetachment microscopy of the P, Q, and R branches of the OH−(v=0) to OH(v=0) detachment threshold", J. Chem. Phys, 122: 014308, doi:10.1063/1.1824904
- Huang, Dao-Ling; Dau, Phuong Diem; Liu, Hong-Tao; Wang, Lai-Sheng (2014), "High-resolution photoelectron imaging of cold C−
60 anions and accurate determination of the electron affinity of C60", J. Chem. Phys., 140: 224315, doi:10.1063/1.4881421 - Kim, J.B.; Weichman, M.L.; Neumark, D.M. (2015), "Low-lying states of FeO and FeO− by slow photoelectron spectroscopy", Mol. Phys., 113: 2105, doi:10.1080/00268976.2015.1005706
- Mathur, B.P.; Rothe, E.W.; Tang, S.Y.; Reck, G.P. (1976), "Negative ions from phosphorus halides due to cesium charge exchange", J. Chem. Phys., 65: 565, doi:10.1063/1.433109
- Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I. (1984), "Spectroscopy and dynamics of the dipole‐bound state of acetaldehyde enolate", J. Chem. Phys., 81: 4883, doi:10.1063/1.447515
- Miller, T.M.; Leopold, D.G.; Murray, K.K.; Lineberger, W.C. (1986), "Electron affinities of the alkali halides and the structure of their negative ions", J. Chem. Phys., 85: 2368, doi:10.1063/1.451091
- Nimlos, Mark R.; Ellison, G. Barney (1986), "Photoelectron spectroscopy of sulfur-containing anions (SO−
2, S−
3, and S2O−)", J. Phys. Chem., 90: 2574, doi:10.1021/j100403a007 - Novick, S.E.; Engelking, P.C.; Jones, P.L.; Futrell, J.H.; Lineberger, W.C. (1979), "Laser photoelectron, photodetachment, and photodestruction spectra of O−
3", J. Chem. Phys., 70: 2652, doi:10.1063/1.437842 - Page, F. M.; Goode, G. C. (1969), Negative ions and the magnetron, John Wiley & Sons[61]
- Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M. (1995), "Relationship between the Electron Affinities and Half-Wave Reduction Potentials of Fullerenes, Aromatic Hydrocarbons, and Metal Complexes", J. Phys. Chem., 99: 8843, doi:10.1021/j100021a060
- Schiedt, J.; Weinkauf, R. (1995), "Spin-orbit coupling in the O−
2 anion", Z. Naturforsch. A, 50 (11): 1041, doi:10.1515/zna-1995-1110 - Schiedt, J.; Weinkauf, R. (1999), "Resonant photodetachment via shape and Feshbach resonances: p-benzoquinone anions as a model system", J. Chem. Phys., 110: 304, doi:10.1063/1.478066
- Schulz, P.A.; Mead, R.D.; Jones, P.L.; Lineberger, W.C. (1982), "OH− and OD− threshold photodetachment", J. Chem. Phys., 77: 1153, doi:10.1063/1.443980
- Sheps, L.; Miller, E.M.; Lineberger, W.C. (2009), "Photoelectron spectroscopy of small IBr−(CO2)n(n=0–3) cluster anions", J. Chem. Phys., 131: 064304, doi:10.1063/1.3200941
- Travers, M.J.; Cowles, D.C.; Ellison, G.B. (1989), "Reinvestigation of the electron affinities of O2 and NO", Chem. Phys. Lett., 164: 449, doi:10.1016/0009-2614(89)85237-6
- Troe, J.; Miller, T.M.; Viggiano, A.A. (2012), "Revised electron affinity of SF6 from kinetic data", J. Chem. Phys., 136: 121102, doi:10.1063/1.3698170
- Wenthold, P.G.; Kim, J.B.; Jonas, K.-L.; Lineberger, W.C. (1997), "An Experimental and Computational Study of the Electron Affinity of Boron Oxide", J. Phys. Chem. A, 101: 4472, doi:10.1021/jp970645u
- Zanni, M.T.; Taylor, T.R.; Greenblatt, B.J.; Soep, B.; Neumark, D.M. (1997), "Characterization of the I−
2 anion ground state using conventional and femtosecond photoelectron spectroscopy", J. Chem. Phys., 107: 7613, doi:10.1063/1.475110
References
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Electron affinity".
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Andersen, T. (2004). "Atomic negative ions: Structure, dynamics and collisions". Physics Reports. 394 (4–5): 157–313. doi:10.1016/j.physrep.2004.01.001.
- ↑ Lykke K.R., Murray K.K. and Lineberger W.C. (1991). Threshold Photodetachment of H−. Phys. Rev. A 43:6104–7. doi:10.1103/PhysRevA.43.6104
- ↑ Haeffler G., Hanstorp D., Kiyan I., Klinkmüller A.E., Ljungblad U. and Pegg D.J. (1996a). Electron affinity of Li: A state-selective measurement. Phys. Rev. A 53:4127–31 doi:10.1103/PhysRevA.53.4127.
- ↑ Scheer M., Bilodeau R.C. and Haugen H.K. (1998). Negative ion of boron: An experimental study of the 3P ground state. Phys. Rev. Lett. 80:2562–65 doi:10.1103/PhysRevLett.80.2562.
- ↑ Bresteau D., Drag C. and Blondel C. (2016). Isotope shift of the electron affinity of carbon measured by photodetachment microscopy. Phys. Rev. A 93 013414 doi:10.1103/PhysRevA.93.013414.
- 1 2 3 Chaibi, W.; Peláez, R. J.; Blondel, C.; Drag, C.; Delsart, C. (2010). "Effect of a magnetic field in photodetachment microscopy". The European Physical Journal D. 58: 29. doi:10.1140/epjd/e2010-00086-7.
- ↑ Blondel C., Delsart C., Valli C., Yiou S., Godefroid M.R. & Van Eck S. (2001). Electron affinities of 16 O, 17 O, 18 O, the fine structure of 16O−, and the hyperfine structure of 17O−. Phys. Rev. A 64 052504 doi:10.1103/PhysRevA.64.052504.
- 1 2 Blondel C., Cacciani P., Delsart C. and Trainham, R. (1989). High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams. Phys. Rev. A 40:3698–3701 doi:10.1103/PhysRevA.40.3698.
- ↑ Blondel C., Delsart C. and Goldfarb F. (2001). Electron spectrometry at the μeV level and the electron affinities of Si and F. Journal of Physics B 34:L281–88 doi:10.1088/0953-4075/34/9/101.
- 1 2 Hotop H. and Lineberger W.C. (1985). "Binding energies in atomic negative ions. II". Journal of Physical and Chemical Reference Data 14:731 doi:10.1063/1.555735.
- ↑ Scheer M., Bilodeau R.C., Thøgersen J. and Haugen H.K. (1998b). Threshold Photodetachment of Al−: Electron Affinity and Fine Structure. Phys. Rev. A 57:R1493–96 doi:10.1103/PhysRevA.57.R1493.
- ↑ Peláez R.J., Blondel C., Vandevraye M., Drag C. and Delsart C. (2011). Photodetachment microscopy to an excited spectral term and the electron affinity of phosphorus. J. Phys. B 44, 195009 doi:10.1088/0953-4075/44/19/195009
- ↑ Carette T., Drag C., Scharf O., Blondel C., Delsart C., Fischer C. F. & Godefroid M. (2010). Isotope shift in the sulfur electron affinity: Observation and theory. Phys. Rev. A 81 042522 doi:10.1103/PhysRevA.81.042522.
- ↑ Berzinsh U., Gustafsson M., Hanstorp D., Klinkmüller A., Ljungblad U. and Martensson-Pendrill A.M. (1995). Isotope shift in the electron affinity of chlorine. Phys. Rev. A 51, 231 doi:10.1103/PhysRevA.51.231
- ↑ Andersson K.T., Sandstrom J., Kiyan I.Y., Hanstorp D. and Pegg D.J. (2000). Measurement of the electron affinity of potassium. Phys. Rev. A 62:022503 doi:10.1103/PhysRevA.62.022503.
- ↑ Petrunin V.V., Andersen H.H., Balling P. and Andersen T. (1996). Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-structure Splitting. Phys. Rev. Lett. 76:744–47 doi:10.1103/PhysRevLett.76.744.
- 1 2 Feigerle C.S., Herman Z. and Lineberger W.C. (1981). Laser Photoelectron Spectroscopy of Sc− and Y−: A Determination of the Order of Electron Filling in Transition Metal Anions. Journal of Electron Spectroscopy and Related Phenomena 23:441–50 doi:10.1016/0368-2048(81)85050-5
- ↑ Ilin R.N., Sakharov V.I. and Serenkov I.T. (1987). "Study of Titanium Negative Ion Using Method of Electron Detachment by an Electric Field". Optics and Spectroscopy (USSR) 62:578.
- ↑ Fu X., Luo Z., Chen X., Li J. & Ning C. (2016). Accurate electron affinity of V and fine-structure splittings of V− via slow-electron velocity-map imaging. J. Chem. Phys. 145, 164307 doi:10.1063/1.4965928
- 1 2 3 4 Bilodeau R.C., Scheer M. and Haugen H.K. (1998). Infrared Laser Photodetachment of Transition Metal Negative Ions: Studies on Cr−, Mo−, Cu−, and Ag−. Journal of Physics B 31:3885–91 doi:10.1088/0953-4075/31/17/013.
- ↑ Chen X., Luo Z., Li J. and Ning C. (2016). Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions. Sci. Rep. 6, 24996 doi:10.1038/srep24996.
- ↑ Chen X. and Ning C. (2016). Accurate electron affinity of Co and fine-structure splittings of Co− via slow-electron velocity-map imaging. Phys. Rev. A 93, 052508 doi:10.1103/PhysRevA.93.052508.
- 1 2 Scheer M., Brodie C.A., Bilodeau R.C., Haugen H.K. (1998c). Laser spectroscopic measurements of binding energies and fine-structure splittings of Co−, Ni−, Rh−, and Pd−. Phys. Rev. A 58:2051–62 doi:10.1103/PhysRevA.58.2051
- ↑ Williams W.W., Carpenter D.L., Covington A.M., Koepnick M.C., Calabrese D. and Thompson J.S. (1998a). Laser photodetachment electron spectrometry of Ga−. Journal of Physics B 31:L341–45 doi:10.1088/0953-4075/31/8/003.
- ↑ Bresteau D., Babilotte Ph., Drag C. and Blondel C. (2015). Intra-cavity photodetachment microscopy and the electron affinity of germanium. J. Phys. B: At. Mol. Opt. Phys. 48 125001 doi:10.1088/0953-4075/48/12/125001.
- ↑ Walter C. W., Gibson N. D., Field R. L., Snedden A. P., Shapiro J. Z., Janczak C. M. and Hanstorp D. (2009). Electron affinity of arsenic and the fine structure of As− measured using infrared photodetachment threshold spectroscopy. Phys. Rev. A 80, 014501
- ↑ Vandevraye M., Drag C. and Blondel C. (2012). Electron affinity of selenium measured by photodetachment microscopy. Phys. Rev. A 85:015401 doi:10.1103/PhysRevA.85.015401.
- ↑ Frey P., Breyer F. and Hotop H. (1978). High Resolution Photodetachment from the Rubidium Negative Ion around the Rb(5p1/2) Threshold. Journal of Physics B 11:L589–94 doi:10.1088/0022-3700/11/19/005.
- ↑ Andersen H.H., Petrunin V.V., Kristensen P. and Andersen T. (1997). Structural properties of the negative strontium ion: Binding energy and fine-structure splitting. Phys. Rev. A 55:3247–49 doi:10.1103/PhysRevA.55.3247.
- 1 2 Feigerle C.S., Corderman R.R., Bobashev S.V. and Lineberger W.C. (1981). Binding energies and structure of transition metal negative ions. J. Chem. Phys. 74, 1580 doi:10.1063/1.441289.
- ↑ Luo Z., Chen X., Li J. & Ning C. (2016). Precision measurement of the electron affinity of niobium. Phys. Rev. A 93, 020501(R) doi:10.1103/PhysRevA.93.020501
- ↑ Norquist P.L., Beck D.R., Bilodeau R.C., Scheer M., Srawley R.A. and Haugen H.K. (1999). Theoretical and experimental binding energies for the d7s2 4F levels in Ru−, including calculated hyperfine structure and M1 decay rates. Phys. Rev. A 59:1896–1902 doi:10.1103/PhysRevA.59.1896.
- ↑ Walter C.W., Gibson N.D., Carman D.J., Li Y.-G. and Matyas D.J. (2010). Electron affinity of indium and the fine structure of In− measured using infrared photodetachment threshold spectroscopy. Phys. Rev. A 82, 032507 doi:10.1103/PhysRevA.82.032507
- ↑ Vandevraye, M.; Drag, C.; Blondel, C. (2013). "Electron affinity of tin measured by photodetachment microscopy". Journal of Physics B: Atomic, Molecular and Optical Physics. 46 (12): 125002. doi:10.1088/0953-4075/46/12/125002.
- ↑ Scheer M., Haugen H.K. and Beck D.R. (1997). Single- and Multiphoton Infrared Laser Spectroscopy of Sb−: A Case Study. Phys. Rev. Lett. 79:4104–7 doi:10.1103/PhysRevLett.79.4104.
- ↑ Haeffler G., Klinkmüller A.E., Rangell J., Berzinsh U. and Hanstorp D. (1996b). The Electron Affinity of Tellurium. Z. Phys. D 38:211 doi:10.1007/s004600050085.
- 1 2 Peláez R.J., Blondel C., Delsart C. and Drag C. (2009) J. Phys. B 42 125001 doi:10.1088/0953-4075/42/12/125001
- ↑ Scheer M., Thøgersen J., Bilodeau R.C., Brodie C.A. and Haugen H.K. (1998d). Experimental Evidence that the 6s6p 3PJ States of Cs− are Shape Resonances. Phys. Rev. Lett. 80:684–87 doi:10.1103/PhysRevLett.80.684.
- ↑ Petrunin V.V., Volstad J.D., Balling P., Kristensen K. and Andersen T. (1995). Resonant Ionization Spectroscopy of Ba−: Metastable and Stable Ions. Phys. Rev. Lett. 75:1911–14 doi:10.1103/PhysRevLett.75.1911.
- ↑ Pan L. and Beck D.R. (2016). La− binding energies by analysis of its photodetachment spectra. Phys. Rev. A 93, 062501 doi:10.1103/PhysRevA.93.062501
- ↑ Felton J., Ray M. & Jarrold C.C. (2014). Measurement of the electron affinity of atomic Ce. Phys. Rev. A 89, 033407 doi:10.1103/PhysRevA.89.033407.
- 1 2 Felfli, Z.; Msezane, A.; Sokolovski, D. (2009). "Resonances in low-energy electron elastic cross sections for lanthanide atoms". Physical Review A. 79. doi:10.1103/PhysRevA.79.012714.
- ↑ Cheng S.B., and Castleman A. W., Jr. (2015). Direct experimental observation of weakly-bound character of the attached electron in europium anion. Sci. Rep. 5 12414 doi:10.1038/srep12414.
- ↑ Davis V.T. and Thompson J.S. (2002b). Measurement of the electron affinity of thulium. Phys. Rev. A 65:010501 doi:10.1103/PhysRevA.65.010501.
- ↑ Davis V.T. and Thompson J.S. (2001). Measurement of the electron affinity of lutetium. Journal of Physics B 34:L433–37 doi:10.1088/0953-4075/34/14/102.
- ↑ Davis V.T., Thompson J. and Covington A. (2005). Laser photodetachment electron spectroscopy studies of heavy atomic anions. Nucl. Instrum. Meth. B 241 118 doi:10.1016/j.nimb.2005.07.073.
- ↑ Pan, Lin; Beck, Donald R. (21 December 2009). "Calculations of Hf− electron affinity and photodetachment partial cross sections" (PDF). Journal of Physics B: Atomic, Molecular, and Optical Physics. IOP Publishing Ltd. 43 (2). Retrieved 22 September 2015.
- ↑ Lindahl A.O. et al. (2010). The electron affinity of tungsten. Eur. Phys. J. D 60, 219 doi:10.1140/epjd/e2010-00199-y
- ↑ Scheer M. D. & Fine J. (1967). Positive and Negative Self‐Surface Ionization of Tungsten and Rhenium. J. Chem. Phys. 46, 3998-4003 doi:10.1063/1.1840476.
- ↑ Bilodeau R.C. and Haugen H.K. (2000). "Experimental studies of Os−: Observation of a bound-bound electric dipole transition in an atomic negative ion". Phys. Rev. Lett. 85:534–37 doi:10.1103/PhysRevLett.85.534.
- ↑ Bilodeau R.C., Scheer M., Haugen H.K. and Brooks R.L. (1999). Near-threshold Laser Spectroscopy of Iridium and Platinum Negative Ions: Electron Affinities and the Threshold Law. Phys. Rev. A 61:012505 doi:10.1103/PhysRevA.61.012505.
- ↑ Andersen T., Haugen H.K. and Hotop H. (1999). Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data 28, 1511 doi:10.1063/1.556047.
- ↑ Carpenter D.L., Covington A.M. and Thompson J.S. (2000). Laser Photodetachment Electron Spectroscopy of Tl−. Phys. Rev. A 61:042501 doi:10.1103/PhysRevA.61.042501.
- ↑ Feigerle C.S., Corderman R.R. and Lineberger W.C. (1981). Electron affinities of B, AI, Bi, and Pb. J. Chem. Phys. 74, 1513 doi:10.1063/1.441174.
- ↑ Bilodeau R.C. and Haugen H.K. (2001). " Electron affinity of Bi using infrared laser photodetachment threshold spectroscopy". Phys. Rev. A 64:024501 doi:10.1103/PhysRevA.64.024501.
- ↑ Li Junqin, Zhao Zilong, Andersson Martin, Zhang Xuemei & Chen Chongyang (2012). Theoretical study for the electron affinities of negative ions with the MCDHF method. J. Phys. B: At. Mol. Opt. Phys. 45, 165004 doi:10.1088/0953-4075/45/16/165004.
- 1 2 Landau A., Eliav E., Ishikawa Y. and Kaldor U., "Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119)". J. Chem. Phys. 115 2389 (2001) doi:10.1063/1.1386413.
- ↑ Hoffman, Darleane C; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
- ↑ Eliav, Ephraim; Kaldor, Uzi; Ishikawa, Y; Pyykkö, P (1996). "Element 118: The First Rare Gas with an Electron Affinity". Physical Review Letters. 77 (27): 5350–5352. Bibcode:1996PhRvL..77.5350E. doi:10.1103/PhysRevLett.77.5350. PMID 10062781.
- ↑ According to NIST as concerns Boron trifluoride, the Magnetron method, lacking mass analysis, is not considered reliable.