Ergodic process

In econometrics and signal processing, a stochastic process is said to be ergodic if its statistical properties can be deduced from a single, sufficiently long, random sample of the process. The reasoning is that any collection of random samples from a process must represent the average statistical properties of the entire process. In other words, regardless of what the individual samples are, a birds-eye view of the collection of samples must represent the whole process. Conversely, a process that is not ergodic is a process that changes erratically at an inconsistent rate.[1]

Specific definitions

One can discuss the ergodicity of various statistics of a stochastic process. For example, a wide-sense stationary process has constant mean

,

and autocovariance

,

that depends only on the lag and not on time . The properties and are ensemble averages not time averages.

The process is said to be mean-ergodic[2] or mean-square ergodic in the first moment[3] if the time average estimate

converges in squared mean to the ensemble average as .

Likewise, the process is said to be autocovariance-ergodic or mean-square ergodic in the second moment[3] if the time average estimate

converges in squared mean to the ensemble average , as . A process which is ergodic in the mean and autocovariance is sometimes called ergodic in the wide sense.[3]

An important example of an ergodic processes is the stationary Gaussian process with continuous spectrum.

Discrete-time random processes

The notion of ergodicity also applies to discrete-time random processes for integer .

A discrete-time random process is ergodic in mean if

converges in squared mean to the ensemble average , as .

Example of a non-ergodic random process

Suppose that we have two coins: one coin is fair and the other has two heads. We choose (at random) one of the coins, and then perform a sequence of independent tosses of our selected coin. Let X[n] denote the outcome of the nth toss, with 1 for heads and 0 for tails. Then the ensemble average is ½(½ + 1) = ¾; yet the long-term average is ½ for the fair coin and 1 for the two-headed coin. Hence, this random process is not ergodic in mean.

See also

Notes

  1. Originally due to L. Boltzmann. See part 2 of Vorlesungen über Gastheorie. Leipzig: J. A. Barth. 1898. OCLC 01712811. ('Ergoden' on p.89 in the 1923 reprint.) It was used to prove equipartition of energy in the kinetic theory of gases
  2. Papoulis, p.428
  3. 1 2 3 Porat, p.14

References

This article is issued from Wikipedia - version of the 10/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.