External ray

An external ray is a curve that runs from infinity toward a Julia or Mandelbrot set.[1] Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray.

External rays are used in complex analysis, particularly in complex dynamics and geometric function theory.

History

External rays were introduced in Douady and Hubbard's study of the Mandelbrot set

Notation

External rays of (connected) Julia sets on dynamical plane are often called dynamic rays.

External rays of the Mandelbrot set (and similar one-dimensional connectedness loci) on parameter plane are called parameter rays.

Polynomials

Dynamical plane = z-plane

External rays are associated to a compact, full, connected subset of the complex plane as :

External rays together with equipotential lines of Douady-Hubbard potential ( level sets) form a new polar coordinate system for exterior ( complement ) of .

In other words the external rays define vertical foliation which is orthogonal to horizontal foliation defined by the level sets of potential.[3]

Uniformization

Let be the mapping from the complement (exterior) of the closed unit disk to the complement of the filled Julia set .

and Boettcher map[4](function) , which is uniformizing map of basin of attraction of infinity, because it conjugates complement of the filled Julia set and the complement (exterior) of the closed unit disk

where :

denotes the extended complex plane

Boettcher map is an isomorphism :

where :

is a Boettcher coordinate

Formal definition of dynamic ray

polar coordinate system and Psi_c for c=-2

The external ray of angle noted as is:

Properties

External ray for periodic angle satisfies :

and its landing point  :[5]

Parameter plane = c-plane

Uniformization

Boundary of Mandelbrot set as an image of unit circle under

Let be the mapping from the complement (exterior) of the closed unit disk to the complement of the Mandelbrot set .

and Boettcher map (function) , which is uniformizing map[6] of complement of Mandelbrot set, because it conjugates complement of the Mandelbrot set and the complement (exterior) of the closed unit disk

it can be normalized so that :

[7]

where :

denotes the extended complex plane

Jungreis function is the inverse of uniformizing map :

In the case of complex quadratic polynomial one can compute this map using Laurent series about infinity[8][9]

where

Formal definition of parameter ray


The external ray of angle is:

Definition of

Douady and Hubbard define:

so external angle of point of parameter plane is equal to external angle of point of dynamical plane

External angle

Angle is named external angle ( argument ).[11]

Principal value of external angles are measured in turns modulo 1

1 turn = 360 degrees = 2 * Pi radians

Compare different types of angles :

external angle internal angle plain angle
parameter plane
dynamic plane

Computation of external argument

Transcendental maps

For transcendental maps ( for example exponential ) infinity is not a fixed point but an essential singularity and there is no Boettcher isomorphism.[16][17]

Here dynamic ray is defined as a curve :

Images

Dynamic rays

Parameter rays

Mandelbrot set for complex quadratic polynomial with parameter rays of root points

Parameter space of the complex exponential family f(z)=exp(z)+c. Eight parameter rays landing at this parameter are drawn in black.

Programs that can draw external rays

See also

Wikimedia Commons has media related to External ray.

References

  1. J. Kiwi : Rational rays and critical portraits of complex polynomials. Ph. D. Thesis SUNY at Stony Brook (1997); IMS Preprint #1997/15.
  2. Yunping Jing : Local connectivity of the Mandelbrot set at certain infinitely renormalizable points Complex Dynamics and Related Topics, New Studies in Advanced Mathematics, 2004, The International Press, 236-264
  3. POLYNOMIAL BASINS OF INFINITY LAURA DEMARCO AND KEVIN M. PILGRIM
  4. How to draw external rays by Wolf Jung
  5. Tessellation and Lyubich-Minsky laminations associated with quadratic maps I: Pinching semiconjugacies Tomoki Kawahira
  6. Irwin Jungreis: The uniformization of the complement of the Mandelbrot set. Duke Math. J. Volume 52, Number 4 (1985), 935-938.
  7. Adrien Douady, John Hubbard, Etudes dynamique des polynomes complexes I & II, Publ. Math. Orsay. (1984-85) (The Orsay notes)
  8. Computing the Laurent series of the map Psi: C-D to C-M. Bielefeld, B.; Fisher, Y.; Haeseler, F. V. Adv. in Appl. Math. 14 (1993), no. 1, 25--38,
  9. Weisstein, Eric W. "Mandelbrot Set." From MathWorld--A Wolfram Web Resource
  10. An algorithm to draw external rays of the Mandelbrot set by Tomoki Kawahira
  11. http://www.mrob.com/pub/muency/externalangle.html External angle at Mu-ency by Robert Munafo
  12. Computation of the external argument by Wolf Jung
  13. A. DOUADY, Algorithms for computing angles in the Mandelbrot set (Chaotic Dynamics and Fractals, ed. Barnsley and Demko, Acad. Press, 1986, pp. 155-168).
  14. Adrien Douady, John H. Hubbard: Exploring the Mandelbrot set. The Orsay Notes. page 58
  15. Exploding the Dark Heart of Chaos by Chris King from Mathematics Department of University of Auckland
  16. Topological Dynamics of Entire Functions by Helena Mihaljevic-Brandt
  17. Dynamic rays of entire functions and their landing behaviour by Helena Mihaljevic-Brandt
Wikibooks has a book on the topic of: Fractals
This article is issued from Wikipedia - version of the 11/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.