Keldysh formalism
Condensed matter physics |
---|
Phases · Phase transition · QCP |
Phase phenomena |
Electronic phases |
Electronic phenomena |
Magnetic phases |
Scientists Van der Waals · Onnes · von Laue · Bragg · Debye · Bloch · Onsager · Mott · Peierls · Landau · Luttinger · Anderson · Van Vleck · Mott · Hubbard · Shockley · Bardeen · Cooper · Schrieffer · Josephson · Louis Néel · Esaki · Giaever · Kohn · Kadanoff · Fisher · Wilson · von Klitzing · Binnig · Rohrer · Bednorz · Müller · Laughlin · Störmer · Tsui · Abrikosov · Ginzburg · Leggett |
In non-equilibrium physics, the Keldysh formalism is a general framework for describing the quantum mechanical evolution of a system in a non-equilibrium state, e.g. in the presence of time varying fields (electrical field, magnetic field etc.). Keldysh formalism is named after Leonid Keldysh. It is sometimes called Schwinger-Keldysh formalism, referring to Julian Schwinger. However, many physicists, like Leo Kadanoff, Gordon Baym, O.V. Konstantinov and V. I. Perel,[1] made significant contributions to developing the method that is now called Keldysh formalism.
To study non-equilibrium systems, one is interested in one-point functions or average values of quantum operators, two-point functions and so on. These quantities are calculated using Keldysh formalism. The main mathematical object in the Keldysh formalism is the non-equilibrium Green's function (NEGF), which is related to the two-point function of operators in the system we are looking at.
Time evolution of a quantum system
Consider a general quantum mechanical system. This system has the Hamiltonian . Let the ground state of the system with respect to this Hamiltonian be . If we now add a time-dependent perturbation to this Hamiltonian, say , the state will no more be the ground state for the full Hamiltonian and hence the system will evolve in time towards an equilibrium state under the full Hamiltonian. In this section, we will see how time evolution actually works in quantum mechanics.
Let us consider a Hermitian operator . In the Heisenberg Picture of quantum mechanics, this operator is time-dependent and the state is not. We are interested in the average . In the natural units, if we define the time-evolution operator as , then the average of the operator is given by
As can be seen, we need to use both the forward time evolution operator as well as the backward time evolution operator . But usually, only the forward time evolution is considered. This is done by assuming that obeys the adiabatic theorem. This is basically saying that the perturbation is turned on slowly as increases from and it is also turned off slowly as approaches .
This forward as well as backward time evolution is a characteristic feature of Keldysh formalism.
Equilibrium case
We started with a system in its ground state . In this case, Keldysh formalism becomes simpler. It is then also called Matsubara formalism.
<<a=b>>
See also
References
- ↑ , A. Kamenev - Field Theory of Non-equilibrium Systems
- Introduction to the Keldysh Nonequilibrium Green Function Technique (pdf) By A. P. Jauho
- Application of the Keldysh Formalism to Quantum Device Modeling and Analysis (pdf) By Roger Lake
- Many-body theory of non-equilibrium systems
- Introduction to Nonequilibrium Statistical Mechanics with Quantum Field
- Green function techniques in the treatment of quantum transport at the molecular scale
- Microscopic approach to current-driven domain wall dynamics
- A. Kamenev - Field Theory of Non-equilibrium Systems.