Marine Biological Laboratory

Marine Biological Laboratory
Established 1888 (1888)
Research type Pure and applied research
Field of research
biology, ecology, climate change, physiology, neuroscience, Sensory systems, microbiology, microbial ecology, genomics, aquaculture, tissue engineering, regeneration, informatics, biodiversity informatics
Director Huntington Willard
Address 7 MBL Street
Location Woods Hole, Massachusetts,
United States
41°31′34.40″N 70°40′22.40″W / 41.5262222°N 70.6728889°W / 41.5262222; -70.6728889Coordinates: 41°31′34.40″N 70°40′22.40″W / 41.5262222°N 70.6728889°W / 41.5262222; -70.6728889
Zip code
02543-1015
Nickname MBL
Affiliations University of Chicago
Website www.mbl.edu

The Marine Biological Laboratory (MBL) is an international center for research and education in biology, biomedicine, and environmental science. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution affiliated with the University of Chicago. After being independent for most of its history, it became affiliated with the university in 2013. It also collaborates with other institutions, including Brown University, the Woods Hole Oceanographic Institution, and the Woods Hole Research Center.

Introduction

The MBL has approximately 300 year-round employees, about half of which are scientists and scientific support staff. They are joined each year by more than 300 visiting scientists, summer staff, and research associates from hundreds of institutions around the world, who conduct research in the Whitman Center for Visiting Research (MBL Facts).

During the summer, more than 1,400 students and faculty from around the world come to the MBL to participate in the laboratory's graduate-level courses, including Neurobiology, Microbial Diversity, Frontiers in Reproduction, and Biology of Parasitism. Some of these courses (Physiology, Embryology, and Neural Systems and Behavior, formerly called Invertebrate Zoology) have been offered for more than a century (MBL Facts).

The MBL's three main resident research centers are The Ecosystems Center, The Bay Paul Center for Comparative Molecular Biology and Evolution, and the Eugene Bell Center for Regenerative Biology and Tissue Engineering (MBL Facts).

The MBL and Brown University share a research and educational affiliation. However, the Brown-MBL Partnership, which included a Ph.D.-awarding Graduate Program in Biological and Environmental Sciences, has ended. Other MBL programs train postgraduates, undergraduates, science teachers, historians, and science journalists. Throughout the year, the MBL is the site for research and planning conferences organized by professional scientific groups (MBL Facts).

The MBL shares a library, the MBLWHOI Library, with Woods Hole Oceanographic Institution. The MBLWHOI Library holds print and electronic collections in the biological, biomedical, ecological, and oceanographic sciences, and houses a growing archival collection, including photograph and videos from the MBL's 120-year history. The library also conducts digitization and informatics projects (MBL Facts).

MBL's president and director is genetics and genomics researcher and professor Huntington Willard.[1] He succeeded cell biologist Joan V. Ruderman in 2015 (MBL Facts).

History

The Marine Biological Laboratory grew from the vision of several Bostonians and Spencer Fullerton Baird, the country's first Fish Commissioner. Baird had set up a United States Fish Commission research station in Woods Hole in 1882, and had ambitions to expand it into a major laboratory. He invited Alpheus Hyatt to move his marine biology laboratory and school which he had founded at the Norwood-Hyatt House in Annisquam, Massachusetts to Woods Hole. Inspired by Harvard biologist Louis Agassiz's short-lived summer school of natural history on Penikese Island, off the coast of Woods Hole, Hyatt accepted the offer. With $10,000 raised by the Woman's Education Association of Boston and the Boston Society of Natural History, land was purchased, a building was erected, and the MBL was incorporated with Hyatt as the first president of the board of trustees. The Fish Commission supplied crucial support, including marine organisms and running sea water (Maienschein, 1989).

Charles Otis Whitman, an embryologist, was retained as the first director of the MBL. Whitman, who believed “other things being equal, the investigator is always the best instructor,” emphasized the need to combine research and education at the new laboratory. The MBL's first summer course provided a six-week introduction to invertebrate zoology; facilities for visiting summer investigators were also offered (Marine Biological Laboratory, 1888).

The MBL Library was established in 1889, with scientist and future MBL trustee Cornelia Clapp serving as librarian. In 1899, the MBL began publishing The Biological Bulletin, a scientific journal that is still edited at the MBL (Maienschein, 1989).

The MBL formally affiliated with the University of Chicago on July 1, 2013. In order to further scientific research and education, the affiliation builds on historical ties with the university, as MBL was led by University of Chicago faculty members in its first four decades (MBL Facts). The president of the university chairs the MBL trustee's board and with their advice appoints its members.[2] The Laboratory is a non-profit Massachusetts corporation, whose sole member is the university.[3]

Research

Cell, developmental, and reproductive biology

Cell, developmental, and reproductive biology have been a central part of the MBL's programs since the 1890s. Important discoveries in these fields at the MBL reach back to 1899, when Jacques Loeb demonstrated artificial parthenogenesis in sea urchin eggs; to 1905, when Edwin Grant Conklin first identified egg cytoplasmic regions that are programmed to form certain tissues or organs; to 1916, when Frank Rattray Lillie identified circulating hormones that influence sexual differentiation (Lillie, 1944). In the MBL's first two decades, cytologists Edmund Beecher Wilson, Nettie Stevens and others made connections between the chromosomes and Mendelian heredity, while Wilson's colleague at both the MBL and Columbia University, Thomas Hunt Morgan, launched the field of experimental genetics (Pauly, 2000:158). Keith R. Porter, considered by many to be a founder of modern cell biology due to his pioneering work on the fine structure of cells, including the discovery of microtubules, carried out research at the MBL starting in 1937 and directed the laboratory from 1975-77 (Barlow et al., 1993: 95-115).

The MBL has long been a center for the world's experts in cell division. Resident Distinguished Scientist Shinya Inoué's innovations in polarized light microscopy and video imaging since the 1950s have been instrumental in clarifying the cellular events of mitosis, including his discovery of the spindle fibers. In the early 1980s, Tim Hunt, Joan Ruderman and others at the MBL identified the first of a class of proteins that regulate the cycle of cell division (cyclin). Hunt was awarded a Nobel Prize in 2001 for this work (Hunt, 2004). In 1984, Ron Vale, Michael Sheetz, and others discovered kinesin, a motor protein involved in mitosis and other cellular processes, during summer MBL research. Vale, Sheetz, and James Spudich received the 2012 Lasker Award for Basic Medical Research for their discoveries related to molecular motors. In 1991 Israeli scientist Avram Hershko began coming to the MBL to study the role that the protein ubiquitin plays in cell division. In 2004, Hershko won a Nobel Prize for his work to establish the basic mechanism of ubiquitin-mediated protein degradation.

The MBL is also a proving ground for new technologies in microscopy and imaging. The availability of cutting-edge imaging instrumentation in the MBL's discovery-based courses puts faculty and students at the forefront of experimentation. MBL Distinguished Scientist Osamu Shimomura, who joined the MBL in 1983, was awarded the 2008 Nobel Prize in Chemistry for his discovery of green fluorescent protein (GFP) in the early 1960s, which led to the development of revolutionary techniques for imaging live cells and their components.

A large portion of the leading developmental biologists in the United States, both historically and today, have participated in the MBL's Embryology Course as directors, lecturers or students. One draw is the Woods Hole location and the availability of marine organisms, particularly the sea urchin, that are ideal for embryological analysis because they shed nearly transparent eggs which are fertilized and develop externally. In the first decades after the course was founded in 1893, its faculty pioneered research directions that remain central today, including the study of cytoplasmic localization in eggs; embryonic cell lineage (important in modern stem cell research); and evolutionary developmental biology (today called ‘evo devo'). Some distinguished embryologists who have directed the course are Charles Otis Whitman (1893–1895); Frank Rattray Lillie (1896–1903); Viktor Hamburger (1942–45); James Ebert (1962–66); Eric H. Davidson (1972–74; 1988–96); and Rudolf Raff (1980–82) (see Davidson, 1993). The course continues to be a premier training ground for developmental biologists and is currently co-directed by Alejandro Sánchez Alvarado and Richard Behringer (2012-2016).

Regenerative biology and medicine

In 2010, the MBL established the Eugene Bell Center for Regenerative Biology and Tissue Engineering, where researchers study the ability of marine and other animals to spontaneously regenerate damaged or aging body parts. An understanding of tissue and organ regeneration in lower animals holds promise for translation to treatments for human conditions, including spinal cord injury, diabetes, organ failure, and degenerative neural diseases such as Alzheimer's. A cornerstone of the Bell Center is a national resource for research on the frog, Xenopus, which is a major animal model used in U.S. biomedical research. The National Xenopus Resource at the MBL is funded by the National Institutes of Health (MBL Facts).

Neuroscience, neurobiology, and sensory physiology

The MBL's contributions to neuroscience and sensory physiology are significant, fostered today by more than 65 visiting investigators and resident researchers in these fields, as well as nine graduate- and post-graduate level courses. The MBL has been a magnet for the discipline since L.W. Williams in 1910 discovered, and John Zachary Young in 1936 rediscovered, the squid giant axon, a nerve fiber that is 20 times larger in diameter than the largest human axon. Young brought this locally abundant, ideal experimental system to the attention of his MBL colleague KS Cole, who in 1938 used it to record the resistance changes underlying the action potential, which provided evidence that ions flowing across the axonal membrane generate this electrical impulse. In 1938, Alan Lloyd Hodgkin came to the MBL to learn about the squid giant axon from Cole. After World War II, Hodgkin and Andrew Huxley, working in Plymouth, England and using the voltage clamp technique developed by Cole, laid the basis for the modern understanding of electrical activity in the nervous system by measuring quantitatively the flow of ions across the axonal membrane. Hodgkin and Huxley received the Nobel Prize in 1963 for their description of the ionic basis of nerve conduction (Barlow et al., 1993: 151-172). Following on Hodgkin and Huxley's work, in the 1960s and 1970s Clay Armstrong and other MBL researchers described a number of the properties of the ion channels that allow sodium and potassium ions to carry electric current across the cell membrane and Rodolfo Llinas described the transmission properties at the squid giant synapse (Llinas 1999). The “scientific career” of the “Woods Hole squid,” Doryteuthis (formerly Loligo) pealeii, continues today, with studies on axonal transport, the squid giant synapse, squid genomics, and the molecular mechanisms of Alzheimer's disease.

Other marine organisms draw neuroscientists and neurobiologists to the MBL each summer, where a history of research into sensory physiology and behavior has been established. Haldan Keffer Hartline, an MBL summer investigator in the 1920s and early 1930s, uncovered several basic mechanisms of photoreceptor function through his studies on the horseshoe crab. Hartline shared the 1967 Nobel Prize with summer MBL colleague George Wald, who described the molecular basis of photoreception by showing that the light-sensitive visual pigment molecules consist of a slightly modified form of vitamin A coupled to a protein. Another long-term summer investigator, Stephen W. Kuffler, is credited with “founding” the science of neurobiology in the mid-1960s at Harvard Medical School and he also initiated instruction in neurobiology at the MBL (Barlow et al., 1993:175-234; 203-234). Albert Szent-Györgyi (Nobel Laureate in 1937) conducted research at the MBL from 1947 to 1986, most significantly on the biochemical nature of muscular contraction. In the 1950s and 1960s, Frederik Bang and Jack Levin at the MBL discovered that the blood of the horseshoe crab clotted when exposed to bacterial endotoxins even in vanishingly small amounts. From this basic research, a reagent, Limulus amoebocyte lysate (LAL), was developed that can detect minute amounts of bacterial toxins. The LAL test has resulted in dramatic improvement in the quality of drugs and biological products for intravenous injection.

Ecosystems science

Ecosystems research became a year-round commitment at the MBL in 1962 with the founding of the Systematics-Ecology program, under the direction of Melbourne R. Carriker. In 1975, the MBL's Ecosystems Center was established, with George Woodwell as director. The original research focus was on the global carbon cycle, an emphasis maintained today. The Ecosystems Center has a year-round staff of more than 40 scientists who study a variety of ecosystems and their responses to human activities and environmental changes. The center is located in Woods Hole yet has a global reach, with active research sites in the Arctic tundra; in forest, coastal and marine sites in New England, Sweden and Brazil; and on the Antarctic Peninsula. The Ecosystems Center is home to two of the 26 U.S. Long Term Ecological Research (LTER) sites: Toolik Lake, Alaska; and Plum Island, Massachusetts. Scientists in the Ecosystems Center study the effects of forest clearance and land-use change on atmospheric chemistry, watershed processes and coastal ecology, the global-scale anthropogenic enrichment of the nitrogen cycle, and ecosystem responses to global warming. The Ecosystems Center is directed by Christopher Neill, whose studies the impact of land-use changes on ecosystems. The Center's immediate past director is Hugh Ducklow, a biological oceanographer. Former directors of the Center who are still active on the scientific staff are Jerry Melillo, who studies the biogeochemistry of terrestrial ecosystems, and John Hobbie, a microbial ecologist. The Ecosystems Center is founded on a vision of collaborative, interdisciplinary science; shared lab facilities and instrumentation; and a long-term, large-scale, systems-wide view of ecosystem processes.

Comparative genomics, molecular evolution, and microbial ecology

The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution was founded at the MBL in 1997 and is currently directed by David Mark Welch. By comparing diverse genomes, scientists at the center are elucidating the evolutionary relationships of biological systems, and describing genes and genomes of biomedical and environmental significance. Microorganisms found in a wide range of ecosystems, including the human microbiome, are studied. Mitchell Sogin, the Bay Paul Center's founder, also founded two courses at the MBL: the Workshop in Molecular Evolution; and Strategies and Techniques for Analyzing Microbial Population Structures. In 2003-2004, Sogin launched the International Census of Marine Microbes, a global effort to describe the biodiversity of marine micro-organisms. Early results from this census in 2006 revealed some 10 to 100 times more types of marine microbes than expected, and the vast majority are previously unknown, low-abundance microorganisms now called the “rare biosphere.” Other Bay Paul Center projects are focused on microbes that live in extreme environments, from hydrothermal vents to highly acidic ecosystems, which may lead to a better understanding of life that could exist on other planets. Activities at the Bay Paul Center are supported by advanced DNA sequencing and other genomics equipment at the center's Keck Ecological and Evolutionary Genetics Facility.

See also

Notes

References

Wikimedia Commons has media related to Marine Biological Laboratory (Woods Hole, Massachusetts).


This article is issued from Wikipedia - version of the 11/22/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.