Monge array

In mathematics applied to computer science, Monge arrays, or Monge matrices, are mathematical objects named for their discoverer, the French mathematician Gaspard Monge.

An m-by-n matrix is said to be a Monge array if, for all such that

one obtains[1]

So for any two rows and two columns of a Monge array (a 2 × 2 sub-matrix) the four elements at the intersection points have the property that the sum of the upper-left and lower right elements (across the main diagonal) is less than or equal to the sum of the lower-left and upper-right elements (across the antidiagonal).

This matrix is a Monge array:

For example, take the intersection of rows 2 and 4 with columns 1 and 5. The four elements are:

17 + 7 = 24
23 + 11 = 34

The sum of the upper-left and lower right elements is less than or equal to the sum of the lower-left and upper-right elements.

Properties

A matrix is a Monge array if and only if for all and .

Applications

References

  1. Burkard, Rainer E.; Klinz, Bettina; Rudolf, Rüdiger (1996). "Perspectives of Monge properties in optimization". Discrete Applied Mathematics. ELSEVIER. 70 (2): 95–96. doi:10.1016/0166-218x(95)00103-x.
This article is issued from Wikipedia - version of the 12/22/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.