Multidimensional Chebyshev's inequality

In probability theory, the multidimensional Chebyshev's inequality is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.

Let X be an N-dimensional random vector with expected value and covariance matrix

If is a positive-definite matrix, for any real number :

Proof

Since is positive-definite, so is . Define the random variable

Since is positive, Markov's inequality holds:

Finally,

This article is issued from Wikipedia - version of the 12/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.