Nuclear pharmacy

Nuclear Pharmacy involves much preparation of radioactive materials that will be used to diagnose and treat specific diseases. It was the first pharmacy specialty established in 1978 by the Board of Pharmaceutical Specialties. Nuclear pharmacy seeks to improve and promote health through the safe and effective use of radioactive drugs for not only diagnosis but also therapy.

History

The concept of nuclear pharmacy was first described in 1960 by Captain William H. Briner while at the National Institutes of Health (NIH) in Bethesda, Maryland. Along with Mr. Briner, John E. Christian, who was a professor in the School of Pharmacy at Purdue University, had written articles and contributed in other ways to set the stage of nuclear pharmacy. William Briner started the NIH Radiopharmacy in 1958. John Christian and William Briner were both active on key national committees responsible for the development, regulation and utilization of radiopharmaceuticals. A Technitium-99m (a radionuclide) generator was commercially available, followed by the availability of a number of Tc-99m based radiopharmaceuticals.

Required training

There are certain precautions that must be taken into account when handling radiopharmaceutical materials on a daily basis. Nuclear pharmacists receive extensive training on the various radiopharmaceuticals that they use. They are trained in radiation safety and other aspects specific to the compounding and preparation of radioactive materials. Many things are required to become pharmacists, but to become a nuclear pharmacist one must go through the following training:

1. 200 hours of classroom training in basic radioisotope handling techniques specifically applicable to the use of unsealed sources is required. The training should consist of lectures and laboratory sessions in the following areas:

  • Radiation physics and instrumentation
  • Radiation protection
  • Mathematics of radioactivity
  • Radiation biology
  • Radiopharmaceutical chemistry

2. 500 hours in handling unsealed radioactive material under a qualified instructor is also required. This experience should cover the type and quantities of by-product material requested in the application and includes the following:

  • Ordering, receiving, surveying, and unpackaging radioactive materials safely.
  • Calibration of dose calibrators, scintillation detectors, and survey meters
  • Calculation, preparation, and calibration of patient doses including the proper use of syringe shield.

Duties

Primary tasks listed in the American Pharmacists Association’s Nuclear Pharmacy Practice Guidelines include:

Work conditions

Nuclear pharmacists work in a more relaxed environment compared to other areas of pharmacy, such as hospital pharmacy or retail pharmacy. There is usually no interaction with customers because many work in a highly regulated environment where consumers are not allowed.

Although the potential for radiation exposure exists in this field, it is kept to a minimum by the use of syringes, gloves, and other devices specifically designed for radioactive materials. A nuclear pharmacist would use leaded glass shielding, leaded glass syringe shields, and lead containers while working with radioactive material. Hence, proper equipment and procedures reduce the risk of harm to personnel working in a nuclear pharmacy. Tungsten shielding is also used; while more expensive, it provides better shielding, and neither breaks or deforms like lead when dropped, nor is toxic as lead.

See also

This article is issued from Wikipedia - version of the 11/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.