Phyllanthus

For the bird genus of the same name, see Capuchin babbler.
Not to be confused with Philanthus.
Phyllanthus
Phyllanthus mirabilis
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Malpighiales
Family: Phyllanthaceae
Tribe: Phyllantheae
Genus: Phyllanthus
L.
Diversity
About 800 species
Synonyms[1]
Plagiotropic shoots of Phyllanthus pulcher
Male and female flowers of Phyllanthus acidus
Flattened stems and flowers of Phyllanthus angustifolius

Phyllanthus is the largest genus in the flowering plant family Phyllanthaceae. Estimates of the number species in this genus vary widely, from 750[2] to 1200.[3] Phyllanthus has a remarkable diversity of growth forms including annual and perennial herbs, shrubs, climbers, floating aquatics, and pachycaulous succulents. Some have flattened leaflike stems called cladodes. It has a wide variety of floral morphologies and chromosome numbers and has one of the widest range of pollen types of any seed plant genus.

Despite their variety, almost all Phyllanthus species express a specific type of growth called "phyllanthoid branching" in which the vertical stems bear deciduous, floriferous (flower-bearing), plagiotropic (horizontal or oblique) stems. The leaves on the main (vertical) axes are reduced to scales called "cataphylls", while leaves on the other axes develop normally.[4] Phyllanthus is distributed in all tropical and subtropical regions on Earth. Leafflower is the common name for all Phyllanthus species.

The circumscription of this genus has been a cause of much confusion and disagreement. Molecular phylogenetic studies have shown that Phyllanthus is paraphyletic over Reverchonia, Glochidion, Sauropus, and Breynia. A recent revision of the family Phyllanthaceae has subsumed all four of these genera into Phyllanthus.[5] This enlarged version of Phyllanthus might eventually be divided into smaller genera, but much more research will be needed before anyone knows how to do this. Progress continues to be made in this area.[6][7] Also see Taxonomy of the Phyllanthaceae and Phyllanthaceae.

Selected species

For full list, see List of Phyllanthus species.

Medical interest

The herb Phyllanthus emblica has gained interest as a potential treatment for human bone disorders[10] as well as diabetes patients.[11]

Gaining attention for its potential effects against hepatitis B,[12] research on Phyllanthus niruri has revealed possible antiviral activity also against human immunodeficiency virus (HIV).[13]

Phyllanthus plants have been used in folk medicine used to treat a wide number of diseases. In Indian Ayurvedic medicine, various herbaceous Phyllanthus species are known as bhuiamla,[14] a name previously assigned to P. niruri only. Bhuiamla is prescribed for jaundice, gonorrhea and diabetes (internal use) as well as poultices, skin ulcer and other skin problems (external use). Infusions are made from young shoots as a treatment of chronic dysentery. Not many of these supposed benefits, however, is established with modern scientific research.

The bark of Phyllanthus muellerianus, commonly called "mbolongo" in Cameroon, is used by pygmies as a remedy for tetanus and wound infections.[15]

Phyllanthus muellerianus extracts are antimicrobial.[15][16] Phyllanthus niruri may possibly help prevent stone formation/urolithiasis.[17] Phyllanthus amarus root and leaf extract showed significant hepatitis C antiviral activity.[18] Phyllanthus species for patients with chronic hepatitis B virus infection have been assessed in clinical trials, but no consensus regarding their usefulness exists.[19] Phyllanthus acidus (leaf) showed antiplasmodial activity against Plasmodium falciparum.[20] Phyllanthus reticulatus leaves showed potential RNase H inhibition and protection against the viral cytopathic effects of HIV-1.[21]

Leaves, roots, stem, bark and berries of this genus contain lignans (e.g. phyllanthin and hypophyllanthin) and a variety of other phytochemicals.[22][23][24]

References

Wikimedia Commons has media related to Phyllanthus.
  1. "World Checklist of Selected Plant Families".
  2. David J. Mabberley. 2008. Mabberley's Plant-Book. third edition (2008). Cambridge University Press.
  3. Kathriarachchi H, Hoffmann P, Samuel R, Wurdack KJ, Chase MW (July 2005). "Molecular phylogenetics of Phyllanthaceae inferred from five genes (plastid atpB, matK, 3'ndhF, rbcL, and nuclear PHYC)". Molecular Phylogenetics and Evolution. 36 (1): 112–34. doi:10.1016/j.ympev.2004.12.002. PMID 15904861.
  4. Webster, Grady L. (1994). "Classification of the Euphorbiaceae". Annals of the Missouri Botanical Garden. 81 (1): 3–32. doi:10.2307/2399908. JSTOR 2399908.
  5. Hoffmann, Petra; Kathriarachchi, Hashendra S.; Wurdack, Kenneth J. (2006). "A Phylogenetic Classification of Phyllanthaceae". Kew Bulletin. 61 (1): 37–53.
  6. Kathriarachchi, Hashendra S.; Samuel, Rosabelle; Hoffmann, Petra; Mlinarec, Jelena; Wurdack, Kenneth J.; Ralimanana, Hélène; Stuessy, Tod F.; Chase, Mark W. (2006). "Phylogenetics of tribe Phyllantheae (Phyllanthaceae) based on nrITS and plastid matK DNA sequence data". American Journal of Botany. 93 (4): 637–655. doi:10.3732/ajb.93.4.637. PMID 21646224.
  7. Kanchana Pruesapan, Ian R.H. Telford, Jeremy J. Bruhl, Stefano G.A. Draisma, and Peter C. Van Welzen. 2008. "Delimitation of Sauropus (Phyllanthaceae) Based on Plastid matK and Nuclear Ribosomal ITS DNA Sequence Data." Annals of Botany 102(6):1007-1018. (see External links below)
  8. 1 2 Luo, S.X., H.-J. Esser, D. Zhang, and S. S. Renner. 2011. Nuclear ITS sequences help disentangle Phyllanthus reticulatus (Phyllanthaceae), an Asian species not occurring in Africa, but introduced to Jamaica. Systematic Botany 36(1): 99-104.
  9. Bussmann, R. W.; Gilbreath, GG; Solio, J; Lutura, M; Lutuluo, R; Kunguru, K; Wood, N; Mathenge, SG (2006). "Plant use of the Maasai of Sekenani Valley, Maasai Mara, Kenya". J Ethnobiol Ethnomed. 2: 22. doi:10.1186/1746-4269-2-22. PMC 1475560Freely accessible. PMID 16674830.
  10. Piva R, Penolazzi L, Borgatti M, et al. (August 2009). "Apoptosis of human primary osteoclasts treated with molecules targeting nuclear factor-kappaB". Annals of the New York Academy of Sciences. 1171: 448–56. doi:10.1111/j.1749-6632.2009.04906.x. PMID 19723088.
  11. Kusirisin W, Srichairatanakool S, Lerttrakarnnon P, et al. (March 2009). "Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients". Medicinal Chemistry. 5 (2): 139–47. doi:10.2174/157340609787582918. PMID 19275712.
  12. P. niruri - Effects on Hepatitis B, Thyagarajan 1982; Mehrotra 1990; Yeh, et al. 1993; Wang 1995.
  13. Ogata T, Higuchi H, Mochida S, et al. (November 1992). "HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri". AIDS Research and Human Retroviruses. 8 (11): 1937–44. doi:10.1089/aid.1992.8.1937. PMID 1283310.
  14. Puri, H. S. (2003) Rasayana: Ayurvedic herbs for longevity and rejuvenation. Taylor & Francis, London, pages 86–93.
  15. 1 2 Brusotti G, Cesari I, Frassà G, Grisoli P, Dacarro C, Caccialanza G"Antimicrobial properties of stem bark extracts from Phyllanthus muellerianus (Kuntze) Excell." J Ethnopharmacol. 2011 Jun 1;135(3):797-800
  16. Assob JC, Kamga HL, Nsagha DS, Njunda AL, Nde PF, Asongalem EA, Njouendou AJ, Sandjon B, Penlap VB"Antimicrobial and toxicological activities of five medicinal plant species from Cameroon traditional medicine". BMC Complement Altern Med. 2011;11:70
  17. Boim MA, Heilberg IP, Schor N "Phyllanthus niruri as a promising alternative treatment for nephrolithiasis." Int Braz J Urol. 2010 Nov-Dec;36(6):657-64; discussion 664
  18. Ravikumar YS, Ray U, Nandhitha M, Perween A, Raja Naika H, Khanna N, Das S.,"Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source." Virus Res. 2011 Jun;158(1-2):89-97
  19. Xia Y, Luo H, Liu JP, Gluud C "Phyllanthus species for chronic hepatitis B virus infection." Cochrane Database Syst Rev. 2011;4:CD008960
  20. Bagavan A, Rahuman AA, Kamaraj C, Kaushik NK, Mohanakrishnan D, Sahal D.,"Antiplasmodial activity of botanical extracts against Plasmodium falciparum." Parasitol Res. 2011 May;108(5):1099-109
  21. Tai BH, Nhut ND, Nhiem NX, Quang TH, Thanh Ngan NT, Thuy Luyen BT, Huong TT, Wilson J, Beutler JA, Ban NK, Cuong NM, Kim YH "An evaluation of the RNase H inhibitory effects of Vietnamese medicinal plant extracts and natural compounds". Pharm Biol. 2011 May 20
  22. Murugaiyah V, Chan KL (June 2007). "Determination of four lignans in Phyllanthus niruri L. by a simple high-performance liquid chromatography method with fluorescence detection". Journal of Chromatography A. 1154 (1–2): 198–204. doi:10.1016/j.chroma.2007.03.079. PMID 17418855.
  23. Srivastava V, Singh M, Malasoni R, et al. (January 2008). "Separation and quantification of lignans in Phyllanthus species by a simple chiral densitometric method". Journal of Separation Science. 31 (1): 47–55. doi:10.1002/jssc.200700282. PMID 18064620.
  24. Bagalkotkar G, Sagineedu SR, Saad MS, Stanslas J (December 2006). "Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review". The Journal of Pharmacy and Pharmacology. 58 (12): 1559–70. doi:10.1211/jpp.58.12.0001. PMID 17331318.
This article is issued from Wikipedia - version of the 6/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.