Unit function
In number theory, the unit function is a completely multiplicative function on the positive integers defined as:
It is called the unit function because it is the identity element for Dirichlet convolution.[1]
It may be described as the "indicator function of 1" within the set of positive integers. It is also written as u(n) (not to be confused with μ(n)).
See also
References
- ↑ Estrada, Ricardo (1995), "Dirichlet convolution inverses and solution of integral equations", Journal of Integral Equations and Applications, 7 (2): 159–166, doi:10.1216/jiea/1181075867, MR 1355233.
This article is issued from Wikipedia - version of the 11/28/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.