Void coefficient

In nuclear engineering, the void coefficient (more properly called “void coefficient of reactivity”) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor moderator or coolant. Reactivity, in the nuclear engineering sense (not to be confused with chemical reactivity), measures the degree of change in neutron multiplication in a reactor core. Reactivity is directly related to the tendency of the reactor core to change power level: if reactivity is positive, the core power tends to increase; if it is negative, the core power tends to decrease; if it is zero, the core power tends to remain stable. The reactivity of the core may be adjusted by the reactor control system in order to obtain a desired power level change (or to keep the same power level). It can be compared to the reaction of an automobile as conditions around it change (for instance, wind intensity and direction or road slope), and therefore the corresponding counter-measure that the driver applies to maintain road speed or execute a desired manoeuvre.

Reactivity is affected by many factors, including coolant/moderator temperature and density, fuel temperature and density, and structural temperature and density. Net reactivity in a reactor is the sum total of all these contributions, of which the void coefficient is but one. Reactors in which either the moderator or the coolant is a liquid typically will have a void coefficient value that is either negative (if the reactor is under-moderated) or positive (if the reactor is over-moderated). Reactors in which neither the moderator nor the coolant is a liquid (e.g., a graphite-moderated, gas-cooled reactor) will have a void coefficient value equal to zero. It is unclear how the definition of 'void' coefficient applies to reactors in which the moderator/coolant is neither liquid nor gas (supercritical water reactor).

Explanation

Nuclear fission reactors run on nuclear chain reactions, in which each nucleus that undergoes fission releases heat and neutrons. Each neutron may impact another nucleus and cause it to undergo fission. The speed of this neutron affects its probability of causing additional fission, as does the presence of neutron-absorbing material. In particular, slow neutrons are more easily absorbed by fissile nuclei than fast neutrons, so a neutron moderator which slows neutrons will increase the reactivity of a nuclear reactor. On the other hand, a neutron absorber will decrease the reactivity of a nuclear reactor. These two mechanisms are used to control the thermal power output of a nuclear reactor.

In order to keep a nuclear reactor intact and functioning, and to extract useful power from it, a cooling system must be used. Some reactors circulate pressurized water; some use liquid metal, such as sodium, NaK, lead, or mercury; others use gases (see advanced gas-cooled reactor). If the coolant is a liquid, it may boil if the temperature inside the reactor rises. This boiling leads to voids inside the reactor. Voids may also form if coolant is lost from the reactor in some sort of accident (called a loss of coolant accident, which has other dangers). Some reactors operate with the coolant in a constant state of boiling, using the generated vapor to turn turbines.

The coolant liquid may act as a neutron absorber or as a neutron moderator. In either case, the amount of void inside the reactor can affect the reactivity of the reactor. The change in reactivity caused by a change of voids inside the reactor is directly proportional to the void coefficient.

A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts as a neutron absorber. If the void coefficient is large enough and control systems do not respond quickly enough, this can form a positive feedback loop which can quickly boil all the coolant in the reactor. This happened in the RBMK reactor that was destroyed in the Chernobyl disaster. In the United States, all nuclear electrical power generation stations in service are of either the PWR or BWR type,[1] two negative-void-coefficient variations of the light water reactor design.

A negative void coefficient means that the reactivity decreases as the void content inside the reactor increases - but it also means that the reactivity increases if the void content inside the reactor is reduced. In boiling-water reactors with large negative void coefficients, a sudden pressure rise (caused, for example, by unplanned closure of a steamline valve) will result in a sudden decrease in void content: the increased pressure will cause some of the steam bubbles to condense ("collapse"); and the thermal output will possibly increase until it is terminated by safety systems, by increased void formation due to the higher power, or, possibly, by system or component failures that relieve pressure, causing void content to increase and power to decrease. Boiling water reactors are all designed (and required) to handle this type of transient. On the other hand, if a reactor is designed to operate with no voids at all, a large negative void coefficient may serve as a safety system. A loss of coolant in such a reactor decreases the thermal output, but of course heat that is generated is no longer removed, so the temperature could rise (if all other safety systems simultaneously failed).

Thus, a large void coefficient, whether positive or negative, can be either a design issue (requiring more careful, faster-acting control systems) or a desired quality depending on reactor design. Gas-cooled reactors do not have issues with voids forming.

Reactor designs

See also

Notes

  1. US Energy Information Administration
  2. Prelas, Mark A.; Peck, Michael (2016-04-07). "Nonproliferation Issues For Weapons of Mass Destruction". Google Books. p. 89. Retrieved 2016-04-20.
  3. See chapter 5.1.4

References

This article is issued from Wikipedia - version of the 10/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.