Zero ring

In ring theory, a branch of mathematics, the zero ring[1][2][3][4][5] or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which xy = 0 for all x and y. This article refers to the one-element ring.)

In the category of rings, the zero ring is the terminal object, whereas the ring of integers Z is the initial object.

Definition

The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and · defined so that 0 + 0 = 0 and 0 · 0 = 0.

Properties

Constructions

Notes

  1. Artin, p. 347.
  2. Atiyah and Macdonald, p. 1.
  3. Bosch, p. 10.
  4. Bourbaki, p. 101.
  5. Lam, p. 1.
  6. Artin, p. 347.
  7. Lang, p. 83.
  8. Lam, p. 3.
  9. Hartshorne, p. 80.
  10. Hartshorne, p. 80.
  11. Hartshorne, p. 80.

References

This article is issued from Wikipedia - version of the 10/8/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.