Gibbons–Hawking space
In mathematical physics, a Gibbons–Hawking space, named after Gary Gibbons and Stephen Hawking, is essentially a hyperkähler manifold with an extra U(1) symmetry.[1] (In general, Gibbons–Hawking metrics are a subclass of hyperkähler metrics.[2]) Gibbons–Hawking spaces, especially ambipolar ones,[3] find an application in the study of black hole microstate geometries.[1][4]
See also
References
- 1 2 Mathur, Samir D. (22 January 2009). "The fuzzball paradigm for black holes: FAQ" (PDF). Ohio State University. p. 20. Retrieved 16 April 2012.
- ↑ Wang, Chih-Wei (2007). Five Dimensional Microstate Geometries. ProQuest. p. 67. ISBN 978-0-549-39022-0. Retrieved 16 April 2012.
- ↑ Bellucci, Stefano (2008). Supersymmetric Mechanics: Attractors and Black Holes in Supersymmetric Gravity. Springer. p. 5. ISBN 978-3-540-79522-3. Retrieved 16 April 2012.
- ↑ Bena, Iosif; Nikolay Bobev; Stefano Giusto; Clement Ruefa; Nicholas P. Warner (March 2011). "An infinite-dimensional family of black-hole microstate geometries" (PDF). Journal of High Energy Physics. International School for Advanced Studies. 3 (22). doi:10.1007/JHEP03(2011)022.
This article is issued from Wikipedia - version of the 10/24/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.