Lunar Polar Hydrogen Mapper
Mission type | Lunar orbiter |
---|---|
Operator | NASA |
Website |
neutron |
Mission duration | 60 days (planned) |
Orbits completed | 141 (planned) |
Spacecraft properties | |
Spacecraft | LunaH-Map |
Spacecraft type | CubeSat |
Bus | 6U |
Manufacturer | Arizona State University |
Payload mass | 14 kg (30 lb)[1] |
Dimensions | 10 cm × 20 cm × 30 cm (3.9 in × 7.9 in × 11.8 in) |
Start of mission | |
Launch date | 30 September 2018 |
Rocket | SLS Block 1 |
Launch site | Kennedy LC-39B |
Orbital parameters | |
Reference system | Polar |
Perilune | 5 km (3.1 mi) |
Inclination | ≈90° (Polar) |
Epoch | Planned |
Lunar Polar Hydrogen Mapper, or LunaH-Map, is one of 13 CubeSats planned to be launched with Exploration Mission 1 in 2018. Along with Lunar IceCube and Lunar Flashlight, LunaH-Map will help investigate the possible presence of water-ice on the Moon.[1] Arizona State University began development of LunaH-Map after being awarded a contract by NASA in early 2015. The development team consists of about 20 professionals and students led by Craig Hardgrove, the Principal Investigator.[2]
Objective
LunaH-Map's primary objective is to map the abundance of hydrogen down to one meter beneath the surface of the lunar south pole. It will be inserted into a polar orbit around the Moon, with its periapsis located near the lunar south pole, initially passing above Shackleton Crater.[1] LunaH-Map will provide a high resolution map of the abundance and distribution of hydrogen rich compounds, like water, in this region of the Moon and expand on the less accurate maps made by previous missions. This information may then be used to improve scientific understanding of how water is created and spread throughout the Solar System or used by future manned missions for life support and fuel production.[3]
LunaH-Map, along with other long distance CubeSat missions like Mars Cube One, will demonstrate vital technologies for including CubeSats in other interplanetary missions.[4]
History
LunaH-Map was conceived in a discussion between Craig Hardgrove and future LunaH-Map chief engineer, Igor Lazbin, about issues with the spatial resolution of various neutron detectors in use around Mars. Instruments like Dynamic Albedo of Neutrons on the Curiosity rover can only make measurements of about 3 m (9.8 ft) in radius from between the rear wheels of the rover, while on orbit neutron detectors, like the High Energy Neutron Detector on the Mars Odyssey probe, can only provide large, inaccurate maps over hundreds of square kilometers.[3] Similar issues are present in current maps of hydrogen distributions on the Moon, so Hardgrove designed LunaH-Map to orbit closer to the lunar south pole than previous crafts to improve the resolution of these maps.
By April 2015, Hardgrove had assembled a team composed of members of various government, academic and private institutions and drafted a proposal to NASA. In early 2015 LunaH-Map was one of two CubeSats chosen by NASA's Science Mission Directorate.[3][5]
Hardware
Because of the scope of this mission, several unique challenges need to be addressed in implementing hardware. Typical low Earth orbit (LEO) CubeSats can use "off-the-shelf" hardware, or parts available commercially for other uses, but because LunaH-Map is intended to run longer and travel further than most LEO CubSat missions, commercial parts cannot be expected to perform reliably for the mission duration unmodified. Also, unlike most conventional CubeSats, LunaH-Map will need to navigate to its desired orbit after leaving the launch vehicle, so it will need to be equipped with its own propulsion system.[6]
The primary science instrument will be a scintillation neutron detector composed of elpasolite (Cs2YLiCl6:Ce or CLYC). This material is a scintillator, which measurably glows when it interacts with thermal and epithermal neutrons. LunaH-Map's neutron detector will consist of an array of sixteen 2.5×2.5×2 cm CLYC scintillators.[7]
See also
References
- 1 2 3 Harbaugh, Jennifer. "LunaH-Map: University-Built CubeSat to Map Water-Ice on the Moon". NASA.gov. NASA. Retrieved 19 March 2016.
- ↑ Cassis, Nikki. "ASU chosen to lead lunar CubeSat mission". asunow.asu.edu. Arizona State University. Retrieved 19 March 2016.
- 1 2 3 Dreier, Casey. "CubeSats to the Moon". Planetary.org.
- ↑ Stirone, Shannon. "CubeSats are Paving Mankind's Way Back to the Moon and Beyond". popsci.com. Popular Science. Retrieved 20 March 2016.
- ↑ Hambleton, Kathryn; Newton, Kim; Ridinger, Shannon. "Space Launch System's First Flight to Send Small Sci-Tech Satellites to Space". NASA.gov. NASA. Retrieved 19 March 2016.
- ↑ Seckel, Scott. "How to build a spacecraft: The Beginning". asunow.asu.edu. Arizona State University. Retrieved 20 March 2016.
- ↑ Hardgrove, Craig et. al. "LunaH-Map CubeSat" (PDF). neutron.asu.edu. Arizona State University. Retrieved 20 March 2016.
External links
- The Lunar Polar Hydrogen Mapper mission: Mapping hydrogen distribution in permanently shadowed regions of the Moon's South Pole. (Presentation to Lunar Exploration Analysis Group, 2015; PDF)
- Interview with Craig Hardgrove on ASU Connections Podcast