Nitroimidazole

5-Nitroimidazole[1]
Names
IUPAC name
5-Nitro-1H-imidazole
Identifiers
100214-79-7 N
3D model (Jmol) Interactive image
ChemSpider 10637918 YesY
PubChem 18208
Properties
C3H3N3O2
Molar mass 113.07 g/mol
Melting point 303 °C (577 °F; 576 K) (decomposes)
Hazards
Main hazards Xn
R-phrases R20/21/22 R36/37/38
S-phrases S26 S36/37
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

5-Nitroimidazole is an organic compound with the formula O2NC3H2N2H. The nitro group at position 5 on the imidazole ring is the most common positional isomer. The term nitroimidazole also refers to a class of antibiotics that share similar chemical structures.[2]

2-Nitroimidazole (azomycin) is used in the synthesis of Etanidazole.

Synthesis

Imidazole reacts with a mixture of nitric acid to give 5-nitroimidazole:

C3H3N2H + HNO3 → O2NC3H2N2H + H2O

Under conventional conditions for nitration, the reaction is conducted in the presence of sulfuric acid.

Nitroimidazole antibiotics

Position numbers on the ring

From the chemistry perspective, nitroimidazole antibiotics can be classified according to the location of the nitro functional group. 4- and 5-nitroimidazole are equivalent from the perspective of drugs since these tautomers readily interconvert. Drugs of the 5-nitro variety include metronidazole, tinidazole, nimorazole, dimetridazole, 6-Amino PA824, ornidazole, megazol, and azanidazole. Drugs based on 2-nitromidazoles include benznidazole.

Nitroimidazole antibiotics have been used to combat anaerobic bacterial and parasitic infections.[3] Perhaps the most common example is metronidazole. Other heterocycles such as nitrothiazoles (thiazole) are also used for this purpose. Nitroheterocycles may be reductively activated in hypoxic cells, and then undergo redox recycling or decompose to toxic products.[4]

Three nitroimidazoles: metronidazole, tinidazole, and nimorazole

References

  1. 4-Nitroimidazole at Sigma-Aldrich
  2. Edwards, David I. "Nitroimidazole drugs - action and resistance mechanisms. I. Mechanism of action" Journal of Antimicrobial Chemotherapy 1993, volume 31, pp. 9-20. doi:10.1093/jac/31.1.9.
  3. Mital A (2009). "Synthetic Nitroimidazoles: Biological Activities and Mutagenicity Relationships". Sci Pharm. 77 (3): 497–520. doi:10.3797/scipharm.0907-14.
  4. Juchau, MR (1989). "Bioactivation in chemical teratogenesis". Annu. Rev. Pharmacol. Toxicol. 29: 165–167. doi:10.1146/annurev.pa.29.040189.001121. PMID 2658769.
This article is issued from Wikipedia - version of the 9/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.